

CRUISe: Composition of Rich User Interface Services

Bundesministeriu für Bildung und Forschung FKZ 01|S08034-0

Motivation

- Evolution des Internets zu einer Anwendungsplattform für Serviceorientierte Webanwendungen (SoWa) und Mashups
- Neue Paradigmen im Backend: Entkopplung, Austauschbarkeit und Verteilung von Daten und wesentlichen Anwendungsbestandteilen mittels (Web) Services
- Neue Probleme im Frontend:
 Aufwändige, zeit- und kostenintensive Entwicklung Desktop-naher Oberflächen
 - » Heterogene UI-Technologien und -Frameworks verhindern Interoperabilität, Wiederverwendbarkeit und Nachhaltigkeit
 - » Heterogene Nutzer-, Nutzungs- und Endgerätekontexte müssen beachtet werden

CRUISe-basierte Mashup-Oberfläche einer SoWa

Forschungsziele

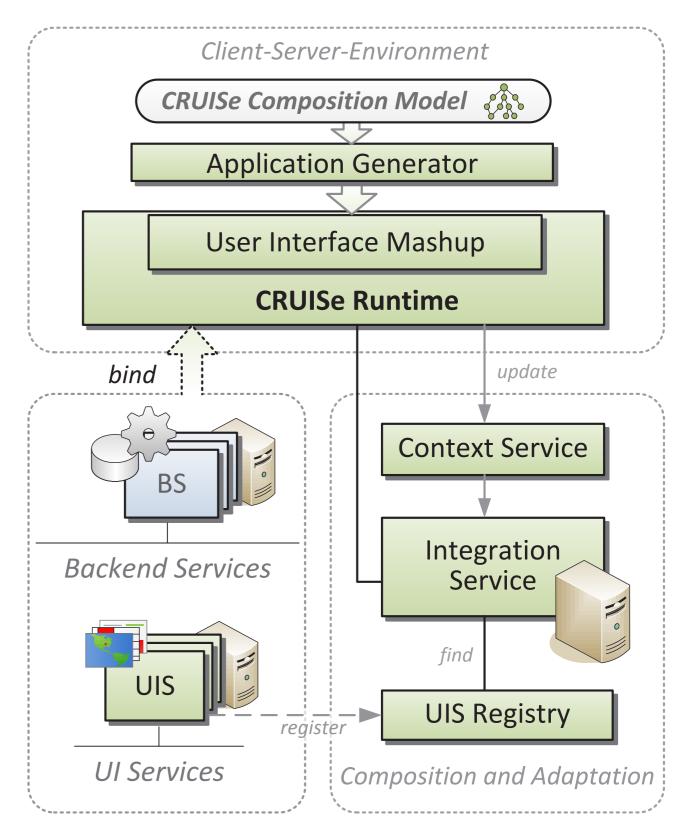
• Modellierung und Bereitstellung adaptiver, serviceorientierer Benutzerschnittstellen

User Interface Services (UIS)

- Kapselung und Bereitstellung wiederverwendbarer, webbasierter UI-Komponenten mit generischer Schnittstelle über Dienste
- Klassifikation und semantische Beschreibung von UI-Komponenten und UI-Services mittels UIS Description Language (UISDL)
- Bereitstellung, Wartung und Aktualisierung der UISDL-Instanzen über eine *UIS Registry*

Dynamische UIS-Komposition

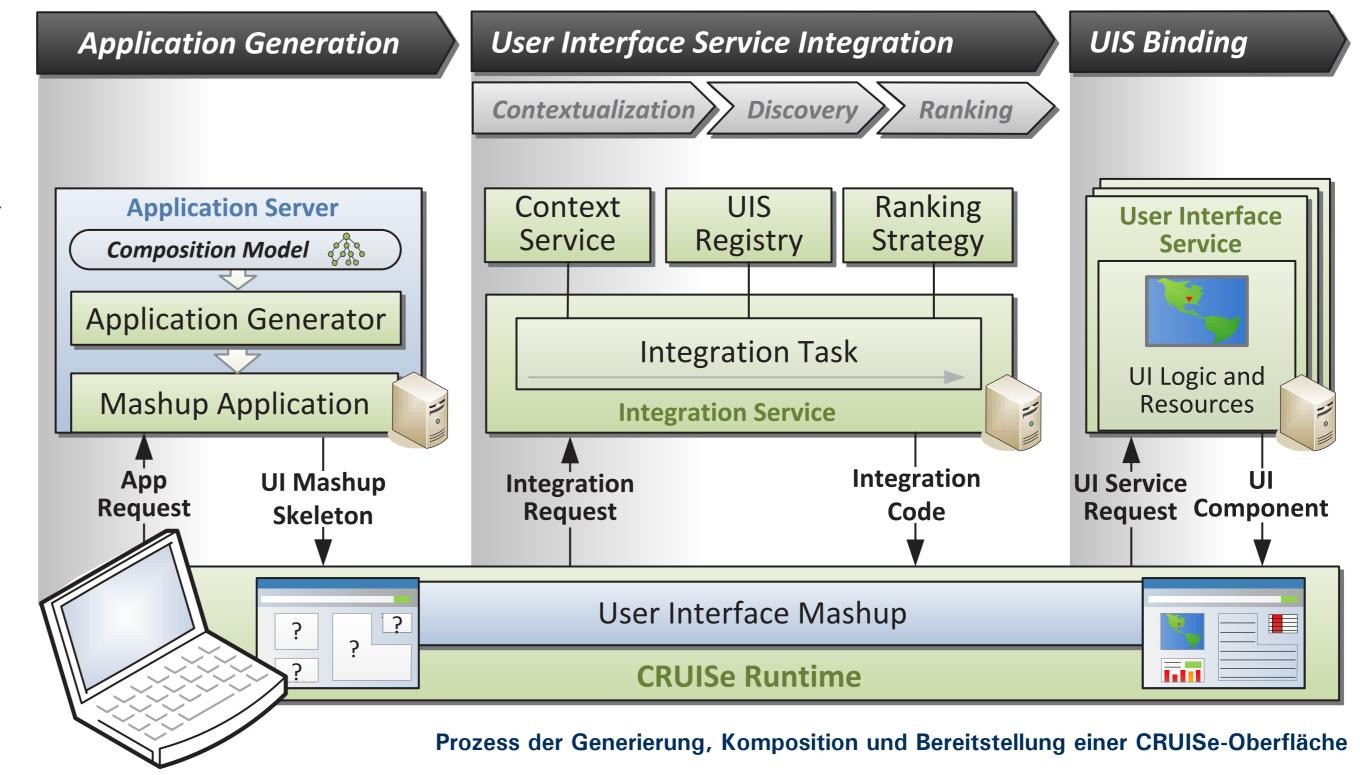
- Plattformunabhängiges Modell und deklarative Beschreibung für serviceorientierte UIsbzw. "UI Mashups"
- Mechanismen zur kontextabhängigen, dynamischen Auffindung, Auswahl, Konfiguration und Integration von UIS
- Laufzeitumgebung für die komposite Benutzerschnittstelle zur Steuerung der UIS-Komposition und dynamischen UI-Adaption


Konzept

Modellierung und Deployment

- Visuelle Modellierung des UI Mashups mit Hilfe eines Autorenwerkzeuges
- Zugrunde liegendes, plattformunabhängiges Composition Model beschreibt
 - » Layout und UI-Konfiguration
 - » Daten- und Kontrollfluss der UI
 - » Adaptives Verhalten der UI
- Modell-Transformation zu einem lauffähigen, plattformspezifischen Anwendungsgerüst durch den *Application Generator*

Kontextabhängige UI-Komposition


- Adaptive Komposition der Oberfläche durch die dynamische, kontextabhängige Integration von UI-Komponenten in das Gerüst
- Steuerung von UI-Integration sowie Datenund Eventfluss durch die plattformspezifische *CRUISe Runtime*, z.B. für
 - » Thin Server Architecture (TSA) (komplett clientseitig)
 - » Eclipse Rich Ajax Platform (RAP) (server- und clientseitig)
 - » Human Tasks (BPEL4People, WS-HT) (prozessintegriert)
- Runtime sendet Anfrage nach UI-Bestandteil an den *Integration Service*
 - » Auflösung von Kontextparametern durch Nutzung eines externen *Context Service*
 - » Suche passender UIS in der *UIS Registry*
 - » Auswahl des passenden UIS durch eine

Konzeptioneller Überblick der CRUISe-Architektur

austauschbare Ranking Strategy

- » Kapselung der generischen UI-Komponente für die Zielplattform
- Integration der UI-Komponente
 - » Zuweisung von ID und Namensraum an die UI-Komponente
 - » Initialisierung über die Schnittstelle
 - » Nachladen benötigter UI-Bibliotheken und -Ressourcen im Hintergrund
- Überwachung der Kontexteigenschaften von Nutzer, Anwendung und Endgerät
- Dynamische Adaption der kompositen Web-Oberfläche durch die Runtime
 - » Layoutanpassung, Rekonfiguration und Austausch von UI-Komponenten

Andreas.Ruempel@tu-dresden.de

